Automated tissue segmentation and blind recovery of (1)H MRS imaging spectral patterns of normal and diseased human brain.
نویسندگان
چکیده
Constrained non-negative matrix factorization (cNMF) with iterative data selection is described and demonstrated as a data analysis method for fast and automatic recovery of biochemically meaningful and diagnostically specific spectral patterns of the human brain from (1)H MRS imaging ((1)H MRSI) data. To achieve this goal, cNMF decomposes in vivo multidimensional (1)H MRSI data into two non-negative matrices representing (a) the underlying tissue-specific spectral patterns and (b) the spatial distribution of the corresponding metabolite concentrations. Central to the proposed approach is automatic iterative data selection which uses prior knowledge about the spatial distribution of the spectra to remove voxels that are due to artifacts and undesired metabolites/tissues such as the strong lipid and water components. The automatic recovery of diagnostic spectral patterns is demonstrated for long-TE (1)H MRSI data on normal human brain, multiple sclerosis, and serial brain tumor. The results show the ability of cNMF with iterative data selection to automatically and simultaneously recover tissue-specific spectral patterns and achieve segmentation of normal and diseased human brain tissue, concomitant with simplification of information content. These features of cNMF, which permit rapid recovery, reduction and interpretation of the complex diagnostic information content of large multi-dimensional spectroscopic imaging data sets, have the potential to enhance the clinical utility of in vivo(1)H MRSI.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملBrain metabolites Associated with Common Clinical Symptoms of multiple sclerosis patients Using MagneticResonance Imaging
Introduction: Multiple Sclerosis (MS) is an auto-immune disease that involves central nervous system (CNS). Magnetic Resonance Spectroscopy (MRS) is an analytical non- invasive method for obtaining the pathologic data of disease and it brings biochemical information about studied tissue which can be helped in studying the reasons and development process of disease and it increa...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NMR in biomedicine
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2008